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The present paper forms a brief supplement to LlJ, which gave a theo- 

retical description of self-oscillatory phenomena occurring during the 

wedging of an infinite brittle body by a rigid wedge moving at constant 

velocity. Starting from the assumption that the cohesion modulus depends 

on the velocity of the tip of the crack, initially decreasing with in- 

crease in this velocity, it was shown that the regime of crack propaga- 

tion at constant velocity is unstable if the wedging velocity is low, 

and that the crack develops in an oscillatory manner. 

In experimental work it would be impractical to use plates which are 

large enough to satisfy the conditions of the theory of wedging of an 

infinite body. Conversely, it is not oossible to carry out a satisfactory 

analytical investigation for arbitrary finite plates. However, there 

exist two limiting cases which admit a very simple analytical study and 

which, in addition, can be reproduced sufficiently closely in the 

laboratory: the wedging of a thin beam and the planing of a thin shaving 

off a large body. The corresponding static problems of wedging have been 

solved by Obreimov [21 ‘and by Roesler and Benbow [31. Here we shall in- 

vestigate self-oscillations during wedging for these two extreme cases. 

It is considered that a study of self-oscillations during the Planing 

of a thin shaving can throw more light on the nature of the Self- 

oscillations which occur during cutting. 

1. Let us consider the following problems. 

1) A thin beam of depth 2H and width b split in two by a rigid wedge 

of depth 2h moving at a constant velocity V (Fig. 1). 

2) A thin shaving of thickness If planed from a very large body of 
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width b by a rigid wedge of depth h moving at a constant velocity V 

(Fig. 2). 

As in [II, we make the assumption that the density of surface energy 
T and the cohesion modulus K depend on the instantaneous velocity v of 

the tip of the crack, and that with increase in v from zero to v = v 
l 

both T and K decrease and then start to increase. 
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Fig. I. Fig. 2. 

During the wedging process the length 1 of the crack varies, so that 
the velocity of its tip is given by v = V + dl/dt. 

In both cases, we assume that the wedged bodies deform in accordance 

with the beam theory and that the beam is rigidly clamped at the tip of 

the crack. To this approximation the force applied by the wedge and the 

cohesive forces acting at the tip of the crack deform only that part of 

the material lying between them. Therefore, the work done by these 

forces is equal to the change of energy of this part only. Consequently, 
the equation of energy balance in both cases is of the form 

Here E and 1 are the kinetic and potential energies of the material 

situated between the leading edge of the wedge and the tip of the crack, 

and F is the wedging force applied by the wedge to the’ body. 

Consider an auxiliary motion in which the tip of the crack is sta- 
tionary (II = 0) and the quantities I, i, . . . at a given instant coincide 
with the corresponding quantities in the basic motion. The equation of 
energy balance for the auxiliary motion is 

Cf.21 

where E’, n’ and F’ are the corresponding quantities for the auxiliary 
motion. Since the velocity of the wedge is small compared with the velo- 

city of sound we can proceed as in [d and take F’ = F and dfl’/dt = 

dn/d t , so that after subtracting (1.2) from (1.1) we obtain the funda- 

mental equation 
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d ‘ed; e’) = [F - 2T (u) b] v (1.3) 

2. In order to evaluate the quantities E, E’ and F we make use of 
the quasistatic approximation, which is possible in view of the low velo- 
city of the wedge. For Problem 1 we have 

1 

ez2.1 2 pbH 
* dy 2 
\c ) dt dx (2.1) 
; 

where y(x, t) is the deflection curve of the beam and p is the density. 

Folloring the procedure of 131 we assume that at x = 0 the beam is 
rigidly clamped, so that the static deflection distribution is given by 

y=3h(+E’-+ P)v &ET 

We have 

(2.2) 

(2.3) 

Substituting (2.3) into (2.1) and performing the necessary simple 
operations, we find that 

d(.s-c?) 3 pbHha . . 
dt =4 1 Vi (2.4) 

Here re have diecarded terms containing first derivatives. This can 
be done since the inertia is small (see the corresponding estimates in 
M). 

We see also that in the same quasistatic approximation 

3EZha 
n=,,, 

bH8 an 3EbHgha 
Z=-’ F=--= 41, (2.5) 

Here E is Young’s modulus. Substituting (2.4) and (2.5) into (1.3) 
we obtain the fundamental differential equation for the function l(t) 

ddl A 
- BKe (v) 1, A =+, 

8 (1 - Y2) --- 
dta - la B= 3nEpHha 

where v is Poisson’s ratio. Completely analogously, we obtain the same 
equation (2.6) for Problem 2. but with the coefficient B given by 

B = i6,(1 - vz) 
3nEpHh’ 

3. In equation (2.6) it is convenient to transfer to non-dimensional 
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form and set 

1 
A = I* (0) ’ 

v1t 
‘z = I* (0) e f[$+$]=Kfi (3.1) 

where ~1 is the characteristic velocity, which can be selected in 
various ways, 1 (0) is the free crack length at zero velocity given by 

. 

1, (0) = H ( 8 K2 (;;r;‘;;_ ,,!a) )‘” (Problem 1) 

3nE?h2 

‘* (O) = H (16K2(0)H(1~ VT’ ) 

‘k 
(Problem 2) 

Equation (2.6) now becomes 

d2A 1 
az= A8 +($+%)A 

where 
-- 

a= (+)ef&2K (FVB (Problem 1) 

c= 

a= (+)2 1/ i3T v2 4K (FVH 

1/” 

’ (Problem 2) 

Investigation of equation (3.3) shows that. as in [ll , when V 

(3.2) 

(3.3) 

(3.4) 

>” 

steady wedging is stable with respect to small disturbances. When V < v 
l 

steady wedging is unstable and there exists a self-oscillatory regime 
of crack propagation. In general the self-oscillations can be of two 

types: with or without intervals when the tip of the crack is stationary. 
The wavelength of the oscillations increases with increase in the velo- 
city of the wedge. In order to calculate the self-oscillations Set up, 

it is necessary to specify the function f in some definite form and to 
perform the integration numerically. An investigation of limiting cases 

may be undertaken in an exactly analogous manner [ll. 

It is known that at low cutting velocities the shaving is found to be 
ribbed, the system of transverse ribs being approximately periodic; the 
ribs thin out as the cutting velocity is increased and disappear com- 
pletely at a velocity above some critical value. It is possible that 
this phenomenon may be explained by the self-oscillation process con- 
sidered here, combined with .oscillations of the tip of the free crack 
formed in front of the cutter. In applying the approach developed here 
to the problem of cutting it must be borne in mind that, for thin 
shavings, the density of surface energy and the cohesion modulus may be 
found to depend on the thickness of the shaving, since the plastic 
region in the vicinity of the tip of the crack might extend right through 
the shaving. 
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